Multi-Physics Computational Modeling Tool for Materials Damage Assessment, Phase I

Completed Technology Project (2007 - 2007)

Project Introduction

The innovation proposed here is to provide a multi-physics modeling tool for materials damage assessment for application to future aircraft design. The software compute engine is based on an existing state-of-art multi-physics solver using first principles of mechanical engineering. Phase I will solve two significant NASA cases using this solver: 1) Coupled fluid-structure simulation of an aircraft wing with aeroelastic behavior and possible fragmentation of the wing, and 2) Simulation of a fuel tank rupture at a ground test facility including trajectory computation of the large fragments. Upon successful demonstration on these two problems, Phase II will proceed to enhance the Multi-Physics, fluid-structure-thermal, compute engine with: 1) a Graphical User Interface (GUI) wrapper to control the simulation, 2) The addition of continuum damage models, 3) a library of models for current NASA materials damage assessment cases, and 4) documentation of the GUI, delivery of the software and on-site training classes. The GUI will allow non-expert users to import existing models from commercial CAD packages and Finite Element codes. Using a desktop Personal Computer, engineers can quickly make accurate and reliable damage assessment decisions for future aircraft structures.

Primary U.S. Work Locations and Key Partners

Multi-Physics Computational Modeling Tool for Materials Damage Assessment, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Multi-Physics Computational Modeling Tool for Materials Damage Assessment, Phase I

Completed Technology Project (2007 - 2007)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead Organization	NASA Center	Hampton, Virginia
Digital Fusion	Supporting Organization	Industry	Huntsville, Alabama

Primary U.S. Work Locations	
Alabama	Virginia

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX09 Entry, Descent, and Landing